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STATIC ANALYSES OF ORTHOTROPIC AND 
NONLINEAR PRESSURE-LOADED MEMBRANES 

Summary 

Analytical finite element studies were conducted for geometrically 
nonlinear pressure-loaded membranes. The membranes were composed of either 
orthotropic glass/epoxy composite materials or materially nonlinear (bilinear) 
aluminum. Three geometric configurations were studied: a rectangular membrane 
40.5" (1029 mm) by 6.5" (165 mm), an "infinite" membrane 6.5" (165 mm) wide, and 
a square membrane 16.5" (419 mm) by 16.5" (419 mm). The NISA II finite element 
code was used for the analysis. Four node linear and eight node quadratic shell 
elements with six degrees of freedom per node were used. Quarter symmetry was 
assumed for the rectangular and square membranes. Half symmetry and appropriate 
side boundary conditions were used for the infinitely long membrane. The models 
employed simply supported boundary conditions at the membrane edges. 
Nonlinearities were treated by breaking the loading into small discrete steps. 
The geometry, stiffness matrix, and pressure loading were recomputed after each 
step. Elastically linear models exhibited cubic load-deflection behavior. That 
is, the pressure needed to produce a given deflection was proportional to the 
deflection cubed. The load-deflection behavior of the aluminum model was cubic 
until yielding and nearly linear thereafter. The ultimate strength of each 
glass/epoxy membrane was determined using the Tsai-Wu failure criterion. Results 
imply that composite fabric plies with the fibers oriented in the principal 
directions of the membrane are the most efficient. The bilinear aluminum model 
indicates that metal membranes are promising, but post-yielding behavior should 
be investigated experimentally. Results also suggest that high aspect ratio 
membranes are more weight efficient. Analyses were conducted of infinitely long 
membranes with "hat" stiffeners. The stiffeners significantly affect the load- 
deflection behavior. 

Introduction 

Tactical shelters must be lightweight but also able to 
withstand dynamic overpressure loading. A prototype shelter 
employing a stiffened membrane construction has been shown 
effective in withstanding a blast wave. Design tools are needed to 
improve the weight efficiency of future membrane designs. 



Membranes are extremely thin plates and by definition have 
negligible bending stiffness. As the center deflection of a 
pressure -loaded plate exceeds its thickness, membrane behavior 
begins to become important. Cylindrical berding analyses1'2 are no 
longer valid as unreasonable deflections would be calculated for 
moderate values of pressure. 

In membranes, stress is assumed constant through the 
thickness. Bending moments are counteracted by force components 
resulting from geometric nonlinearities as illustrated in Figure 1. 
Deflection is no longer proportional to applied pressure. Since 
undeflected membrane cannot have out-of-plane force components, the 
equations are singular at zero deflection and must be solved with 
numerical methods3. Specific isotropic cases, such as square and 
circular membranes4 and membrane strips5, have been solved 
numerically to show that deflection is proportional to the cube 
root of applied pressure and stress is proportional to pressure to 
the % power. This behavior results because the change in length of 
a ligament of the membrane for a given change in center deflection 
can be shown to be dominated by a term quadratic in out-of-plane 
deflection. Thus, strain (and therefore stress) levels are 
proportional to the square of the deflection. 

A thermodynamic argument can then be used to understand the 
cubic behavior. Internal energy (strain energy) is proportional to 
the square of the strain level and thus deflection to the fourth 
power. The change in internal energy must be equal to the work done 
on the system, which takes the form of an integral of the pressure 
with respect to deflection. In order for such an integral to be 
proportional to deflection to the fourth power, the pressure must 
be proportional to the deflection cubed. 

Dynamic analysis of a membrane struck by a pressure wave must 
consider that the membrane will react as a mass on a cubic spring 
rather than a linear spring. The dynamic magnification factor for 
a static equivalent load will not be two as is customary for linear 
systems. An analysis detailed in the Appendix shows that the static 
pressure that is needed to generate the displacement and stress 
states experienced at maximum deflection should be four times the 
dynamically applied value. Godfrey verified this with an isotropic 
membrane using o. dynamic finite element analysis6, although the 
deflection mode shape varied slightly from the static case. This 
discrepancy may result from the inability of the dynamic finite 
element code he used to account for the effect of changes in 
element size and orientation on the magnitude and direction of the 
pressure load after each time step. 

Finite Element Model 

Analytical finite element studies were conducted for 
geometrically nonlinear pressure-loaded membranes. The membranes 
were composed of either orthotropic glass/epoxy composite materials 
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or materially nonlinear (bilinear) aluminum. Three geometric 
configurations were studied: a rectangular membrane 40.5" (1029 mm) 
by 6.5" (165 mm), an "infinite" membrane 6.5" (165 mm) wide, and a 
square membrane 16.5" (4ly mm) by 16.5" (419 mm). 

The glass/epoxy lamination sequences included fabric plies 
oriented along the major axes, along the membrane diagonals, at 45° 
to the major axes, or at 45° to the membrane diagonal. For the 
rectangular membrane, the appropriate lamination sequences were 
[0/90],, [±9.1],, [±45],, and [±35.9],, respectively. For the 
infinite and square membranes, the fiber orientations are limited 
to [0/90], and [±45],. Lamination sequences were repeated with the 
addition of a 90° ply of unidirectional glass/epoxy tape for 
stiffening in the transverse direction. 

The membrane thicknesses were 0.0293" for glass/epoxy 
membranes and 0.191" for aluminum membranes. The aluminum thickness 
was chosen to have the same areal density as the composite for 
comparison purposes. The properties of each membrane are given in 
Table 1. 

The NISA II finite element code was used for the analysis. The 
elements were rectangular general three-dimensional shell elements. 
Four node linear elements v.Tore used for the orthotropic glass/epoxy 
and eight node quadratic elements were used for the isotropic 
aluminum. Both elements had three translational and three 
rotational degrees of freedom per node. The same nodal spacing was 
used for both glass/epoxy and aluminum membranes, so the 
glass/epoxy membrane models had four times as many elements. The 
element and node arrangement for the two types of models are shown 
in Figure 2. All models used simply supported boundary conditions 
at the membrane edges. Quarter symmetry was assumed for the 
rectangular and square membrane . The infinitely long membrane was 
assnmed to be symmetric about the mid-span. The degrees of freedom 
at all nodes at each spanwise location were constrained to have the 
same values. This enforced the "boundary condition" in an infinite 
membrane that no quantity is a function of longitudinal position. 
In addition, no longitudinal displacement was allowed at any node. 

The geometric and material nonlinearities were treated by 
breaking the loading (pressure level) into small discrete steps. 
The geometry, stiffness matrix, and pressure forces were 
automatically recomputed by the NISA software after each step. The 
first few steps had small enough deflections that a linear plate 
bending analysis was adequate. Once the deflections became 
significant, the recomputation of parameters was necessary. The 
results at each step were checked for convergence of reaction 
forces, internal energy, and displacement. The selection of load 
increments for each analysis involved some trial and error. Small 
load increments yielded computationally intensive analyses while 
large increments hampered convergence. The composite membranes were 
loaded to a 25.0 psi applied pressure load. Since aluminum 
membranes can undergo yielding, their load-deflection behavior can 
change. They were analyzed to the static pressure that would 
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Table l: Membrane Material Properties 

Lamination 
Sequence* 

Longitudinal 
Modulus 

E* 
[msi] 

Transverse 
Modulus 

ET 
[msi] 

Shear 
Modulus 

G 
[msi] 

Poisson's 
Ratio 

V 

[0f/90f]B 3.40 3.40 1.00 0.10 

[0f/90f/90i. ] „ 2.90 3.93 0.86 0.09 

[±9.1*1. 3.40 3.27 1.05 0.12 

[±9.1f/90^]fl 2.91 3.83 0.90 0.10 

[±35.9,]. 2.73 2.69 1.49 0.29 

[±35.9f/90^]s 2.44 3.39 1.23 0.20 

[±45,]. 2.62 2.62 1.54 0.31 

[±45f/90i,]B 2.37 3.34 1.27 0.21 

Aluminum E = 10.0 msi V = 0.33 aviPlH ~ 35 ksi 

€ult = 12.0% *uit = 42 ksi 



produce the equivalent deflection, stress, and strain distribution. 
When a 10 psi pressure wave strikes a flat surface, the effective 
pressure is enhanced by fluid dynamic reflection to a peak level of 
25.3 psi. The duration at or near this peak exceeds the time needed 
for the membranes to respond. If the load-deflection behavior of 
the membrane remained cubic, the equivalent static pressure load 
would be four times the peak level, or 101.2 psi. 

Analyses were conducted on infinite membranes with "hat" 
stiffeners. The stiffeners were 5.5" (140 mm) across and 
2.86" (73 mm) high. The boundary condition was that the centerline 
of the stiffener was clamped at both its upper and lower surfaces 
and that the centerline of its lower surface was fixed. This model 
is illustrated in Figure 3. 

Results 

The center deflection was determined for each finite element 
model at each load increment. A typical load-deflection curve is 
shown in Figure 4. A linear regression was run on the logarithm of 
the load versus the logarithm of the deflection. The slope of the 
regression yields the order of the relationship (i.e., an exponent 
of one for a linear relationship, an exponent of three for a cubic 
relationship). The correlation coefficient, R, gives an indication 
of the quality of the fit of the regression, with a value of 1.0 
indicating a perfectly straight line. Since the first load steps 
yield deflection on the order the membrane thickness, they are 
dominated by linear plate theory effects. Thus, only calculated 
deflections which exceeded five times the membrane thickness were 
included. The load-deflection behavior of the bilinear aluminum 
models changed after the onset of yielding, so points after the 
onset of yielding were not included. 

Figure 5 shows a typical linear regression of calculated load 
and deflection values for a composite membrane. Figure 6 shows a 
typical linear regression of calculated load and deflection values 
for a bilinear aluminum membrane. The regressions for the membranes 
yielded exponent values between 2.995 and 3.002 with correlation 
coefficients ranging from 0.9999996 to 0.999999998, indicating 
nearly perfect cubic behavior. The regressions on the aluminum 
membranes after they had experienced yielding over the majority of 
their area produced exponents ranging from 1.060 to 1.069 with 
correlation coefficients from 0.99988 too 0.99992, indicating 
nearly linear behavior. Table 2 shows the center deflection of the 
composite membranes at 25 psi. Table 3 contains the maximum center 
deflections experienced by the aluminum membranes at 101.2 psi. 

The models of infinite membranes with stiffeners at the 
membrane boundary did not display cubic load-deflection behavior. 
The exponents for the membranes ranged from 2.302 to 2.322 with 
correlation coefficients from 0.99990 to 0.99994. A regression was 
also run on the load data versus the difference in deflection from 
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Table 2: Maximum Deflections of Glass/Epoxy 
Membranes at a Pressure of 25 psia 

Lamination 
Sequence 

Infinite 
Membrane 

Rectangular 
Membrane 

Square 
Membrane 

Infinite 
Membrane 

with 
Stiffener 

tOf/90f]s 0.275 0.275 0.805 0.462 

[0f/90f/9Öt]B 0.262 0.262 0.802 0.443 

[±9.1,]. ■ 0.278   — .— 

[±9.1f/90t]„ — 0.264 ——   

[±35.9f]s   0.290   ■ 

[±35.9f/9Ö«.]H   0.271     

[±45,],, 0.291 0.291 0.832 0.488 

[±45f/9Öt]s 0.272 0.272 0.821 0.456 
* Dimensions are inches 

12 



Table 3: Maximum Deflection of Bilinear 
Aluminum Membranes at 101.2 psia 

Infinite Membrane 0.668 

Rectangular 
| Membrane 

0.668 

Square Membrane 2.683 

Infinite Membrane 
with Stiffener 

| (Total Deflection) 

0.633 

Infinite Membrane 
with Stiffener 
(Relative to 

1 Membrane Edge) 

0.243 

a Dimensions are inches 

13 



the center of the membrane to the boundary between the membrane and 
the stiffener. In this case, the exponents ranged from 3.748 to 
3.975 with correlation coefficients ranging from 0.99794 to 
0.99840. After the aluminum membrane had experienced yielding, its 
exponent for center deflection was 2.608 with a correlation 
coefficient of 0.99994 and its exponent for the difference in 
deflections was 4.532 with a correlation coefficient of 0.99989. 

The stress distribution was determined for each model at each 
load. Figures 7 through 12 show typical distributions of the in- 
plane stresses ou, a22, and a12 for rectangular and square composite 
membranes at maximum pressure load of 25 psi. It can be seen that 
even with a 90° tape ply, the o22 distribution for the square 
membrane is similar to a rotated version of the olx distribution. 
Figures 13 and 14 show typical distributions of oxl and o22 for 
infinite composite membranes at a 25 psi pressure load. The o12 
values are identically zero for this configuration. Figures 15 
through 17 show distributions of von Mises equivalent stress for 
the rectangular, square, and infinite bilinear aluminum membrane 
models, respectively, at the first load increment after the onset 
of yielding. Figures 18 and 19 show typical distributions of au and 
o22 for infinite composite membranes with stiffeners at a 25 psi 
pressure load. 

Safety factors were determined for each glass/epoxy membrane 
using the Tsai-Wu failure criterion. The stress state in each ply 
was calculated from the laminate stress level when the applied 
pressure was 25 psi. The failure criterion was then applied on a 
ply by ply basis. The safety factor for any point in the stress 
distribution is defined as the ratio of the stress state that would 
cause failure to the stress state calculated. The safety factor for 
the membrane is defined as the lowest safety factor of all points 
on the -nbrane. Two types of safety factors are listed for each 
composite membrane. The first ply failure (FPF) safety factor 
relates to that stress distribution which causes the first failure 
at any point in any ply. Failure of an individual ply need not 
imply failure of all plies at that location. The ultimate stress 
safety factor relates to that stress distribution which causes all 
plies at a given point to fail. 

The calculation of ultimate failure at a point depends on 
assumptions made about ply properties and stress distribution after 
first ply failure occurs. In the analyses in this paper, there were 
two types of failure: the simultaneous failure of all plies (when 
all the plies were glass/epoxy fabric) and the failure of an 
individual 90° unidirectional glass/epoxy tape ply. The damage area 
after first ply failure was assumed to be small, so the laminate 
stress distribution was assumed not to change. That is, the total 
stress level remained the same, but there was some redistribution 
of load between plies. Since the 90° plies failed primarily in 
transverse tension, it was assumed that matrix properties 
(transverse strength and stiffness, shear strength and stiffness) 
but not fiber properties (longitudinal strength and stiffness) were 
lost. The stresses were recalculated for each ply in the damaged 

14 
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laminate and the Tsai-Wu criterion was applied again to determine 
the ultimate failure safety factor. In the laminates with only 
fabric plies, any ply failure resulted in the loss of strength and 
stiffness of half the plies. In all such cases, the remaining plies 
were immediately overloaded. Ultimate failure was then triggered 
and two safety factors are therefore equivalent for these 
laminates. 

The safety factors are listed in Table 4. The critical points 
for failure of the rectangular membranes were found to be at the 
boundaries near the ends rather than the membrane center. The ply 
failures of the 90° plies occurred at the midpoint of the short 
edge of the specimen. Most of the ultimate failures occurred along 
the long edge, although relatively close to the end. The critical 
point for the square membranes was found to be the midpoint of the 
sides. The infinitely long membranes were found to have a nearly 
constant stress state across the entire width, indicating failure 
in an actual structure could initiate anywhere along the span. 

Discussion 

For thin rectangular pressure-loaded plates, linear plate 
theory begins to give way to cubic membrane behavior when maximum 
deflection is on the order of the plate thickness. The behavior 
remains cubic as long as the material remains linearly elastic. 

The aluminum membranes experienced a significant decrease in 
tangent modulus after yielding which resulted in load-deflection 
behavior approaching linearity. This linearity can be understood by 
examining the extreme case of elastie-perfectly plastic behavior. 
Once the behavior is perfectly plastic, the stress level is 
independent of deflection. Geometrically altering the angular 
deflection at the boundary (and therefore the out-of-plane force 
component) becomes the only means for increasing the reaction force 
when the pressure load is increased. If the deflection "mode shape" 
is relatively constant with small out-of-plane angular deflection 
at the boundaries, then the "amplitude" (and therefore the center 
deflection and the out-of-plane force component) must be 
proportional to the load level. 

The ultimate strength safety factors imply that composite 
fabric plies with the fibers oriented in the principal directions 
of the membrane (i.e., the [0/90]8 laminate) are the most efficient. 
These laminates have the highest safety factors and will not fail 
if subjected to the dynamic impact of a 10 psi pressure wave. Since 
the equivalent maximum pressure level for a 10 psi pressure wave is 
101.2 psi and the pressure level analyzed 25 psi, the safety factor 
necessary to assure structural survival is the % power of their 
ratio, or 2.54. 

The inclusion of 90° unidirectional plies is detrimental 
because of their inherent weakness in the laminate's longitudinal 
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Table 4: Safety Factors for Glass/Epoxy 
Membranes at a Pressure of 25 psi 

Lamination 
Sequence 

Infinite 
Membrane 

Rectangular 
Membrane 

Square 
Membrane 

Infinite 
Membrane 

with 
Stiffener 

FPFa Ultb FPF Ult FPF Ult FPF Ult 

[Of/90,]« 3.12 3.12 2.80 2.80 1.89 1.89 1.92 1.92 

[0f/90f/90t:]fi 1.86 3.47 0.46 3.03 0.20 1.61 1.54 2.86 

[±9.1*1. —— — 1.94 1.94 — — — — 

[±9.1f/90^a — — 0.45 2.79 —   —   

[±35.9f]. — — 2.14 2.14 ——   — — 

[±35.9f/90t]s 
_ — 0.37 2.42 —   —   

[±45f]fi 2.23 2.23 2.13 2.13 1.30 1.30 1.37 1.37 

[±45f/9Öt]fl 1.73 2.65 0.36 2.24 0.18 1.10 1.43 2.18 

First Ply Fai 
b Ultimate 

lure 
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direction. Splits along the fiber direction require shear transfer 
through neighboring plies. The resulting stress concentrations can 
weaken the entire laminate. If first ply failure is acceptable and 
the assumptions regarding post-first ply failure are adequate, then 
laminates with 90° unidirectional plies have a slight strength 
advantage because the 90° unidirectional plies, even when damaged, 
reduce the maximum deflection and therefore stress level in the 
fabric plies. Although fabric plies in general may suffer some 
internal damage before overall ply failure, the fibers remain 
largely intact and the plies retain most of their strength and 
stiffness without relying on shear transfer through neighboring 
plies. Thus, the laminates containing all fabric plies are superior 
if first ply failure is to be avoided. 

Results suggest that high aspect ratio membranes are more 
weight efficient for membranes of given area. As the aspect ratio 
of the membrane is reduced, the width of the membrane must be 
increased to preserve area. Wider membranes at the same pressure 
level will have greater deflection and will have to react far 
greater out-of-plane load per unit length of the boundary. Thus, 
either the pressure level must be reduced or the membrane thickness 
must be increased to maintain the same ultimate failure safety 
factor. 

When determining ultimate strengths, the critical location is 
the end region where the deflection field transitions from the far 
field distribution to the end boundary conditions. The infinite 
membrane analysis gives excellent agreement with the full model for 
stress and deflection distributions away from the ends. 
Nonetheless, the model which includes the end region is needed for 
sufficient strength characterization. It can also be noted that the 
infinite model has a nearly constant stress field across the 
membrane width. This is analogous to a section of an infinitely 
long balloon inflated to form a right circular cylinder. 

The results of the bilinear aluminum models indicate that 
these membranes do not approach their ultimate strain at 25 psi. 
The aluminum membrane behavior is rather complex because the load- 
deflection behavior reverts from cubic to linear after yielding. 
Permanent deformations can accumulate after each oscillation 
resulting in further complications. Since the failure of biaxially 
loaded metals after yielding and permanent deformation is not well 
understood, it is not possible to conclude from this analysis 
whether or not a particular aluminum membrane configuration would 
survive a particular loading. Metal membranes should be tested 
experimentally, possibly via shock tube tests. If an aluminum 
membrane can provide the same protection against pressure loading 
as a composite membrane with a similar areal density, its 
advantages in manufacturing and electromagnetic shielding would 
make it an attractive alternative. 

Stiffeners significantly affect the global behavior of 
infinite strip membrane models. The absolute center deflection and 
the applied pressure no longer have a cubic relationship. This 

30 



results from the displacement of the membrane boundaries. The 
out-of-plane displacement of the boundaries adds to the overall 
deflection. The transverse displacement tends to stretch the 
membrane tighter. The effects of the stiffener interact in a 
complex manner, even to the point of decreasing the center 
deflection of the aluminum membrane. This results in part from the 
side forces from the applied pressure on the stiffener webs. The 
effects of the stiffener behavior could be more pronounced in 
models allowing for the length dimension of the membrane and 
bending of the stiffener. The dynamic behavior of the entire 
structure then involves complex interactions between linear and 
nonlinear components. 

Conclusions 

The results of the analyses in this investigation support the 
following conclusions: 

1. The load-deflection behavior of a thin materially linear 
membrane is cubic once the deflection is greater than the order of 
the membrane thickness. After yielding and its related significant 
reduction in tangent modulus, the load-deflection behavior of 
bilinear aluminum membranes approaches linearity. 

2. The most effective lamination sequences for square or 
rectangular composite membranes appear to be fabric plies with the 
fibers oriented along the major axes of  the membrane. 

3. The most effective configuration for rectangular membranes 
appears to be a long thin (high aspect ratio) membrane. 

4. The most critical area for material failure of rectangular 
membranes is near the membrane's end. Thus, two-dimensional 
analyses which ignore end effects may be inadequate to properly 
predict membrane strength. 

5. Aluminum membranes exhibit promise for providing protection 
from both pressure loading and electromagnetic interference. 
Nonetheless, the uncertainties regarding dynamic behavior and 
biaxial failure after yielding and permanent deformation will most 
likely require experimental study. 

6. The use of membrane boundaries with finite stiffness 
(i.e. stiffeners) significantly affects global behavior of the 
membrane. Further analyses are warranted to investigate this 
behavior. 
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APPENDIX 

Consider a mass m on a nonlinear spring on which the magnitude 
of the restoring force is proportional to the cube of the 
displacement x: 

At time t = 0, an external force F0 is applied as a step function 
in the positive x direction. The equation of motion can thus be 
written: 

F0 - kx2  = nix (A.2) 

The equilibrium displacement for the static case, xs, can be 
determined directly from Equation A.l: 

F0 = kx2
s (A. 3) 

Substituting A.3 into A.2 and rearranging the terms yields: 

rrik 4 k{x2  - xl)  = 0 (A.4) 

Displacements can be nondimensionalized by the static value: 

X • -£ (A.5) 

and a convenient constant A can be defined: 
Equation A.4 can now be written: 

^x + x3 - i = o <A*6) 

If both sides of the equation are multiplied by the derivative of 
X with respect to timef it becomes: 

&%X  + X3X - X = 0 (A.8) 

Equation A.8 can be rewritten as: 

■&(!*' *  JX< - X) - 0 (A.9) 

33 



This implies: 

f*2 ♦ ^X4 " X - C (A.10) 

where C is a constant. The initial conditions are such that: 

*(0) = X(0) = 0 (A.11) 

Thus, C is identically zero: 

-§*2 ♦ -J-X4 " X - 0 (A.12) 

At the extremum values of Xr ^ts derivative with respect to time 
will be zero. Thus, the maximum and minimum values of x satisfy the 
following equation: 

-jX4 " X - 0 (A.13) 

It can be seen by inspection that x^  and Xmm are given by: 

x-»-Vr ; x^n-o (A.i4) 

The implication of this result on the analysis in the text is that 
the static pressure that must be applied to achieve the same 
deflection and stress state experienced at the maximum deflection 
is four times the actual dynamically applied pressure. 
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